Robotic Arm Manipulation to Perform Rock
Skipping in Simulation

Nicholas Ramirez & Michael Burgess
Department of Electrical Engineering and Computer Science (EECS)
Massachusetts Institute of Technology (MIT)
Cambridge, MA, USA

Abstract—Rock skipping is a highly dynamic and relatively
complex task that can easily be performed by humans. This
project aims to bring rock skipping into a robotic setting, utilizing
the lessons we learned in Robotic Manipulation. Specifically, this
project implements a system consisting of a robotic arm and
dynamic environment to perform rock skipping in simulation.
By varying important parameters such as release velocity, we
hope to use our system to gain insight into the most important
factors for maximizing the total number of skips. In addition,
by implementing the system in simulation, we have a more
rigorous and precise testing approach over these varied test
parameters. However, this project experienced some limitations
due to gripping inefficiencies and problems with release height
trajectories which is further discussed in our report.

Index Terms—rock, skipping, manipulation, simulator

I. INTRODUCTION

Rock skipping has been one of the most famous pastimes
for thousands of years with many people today having fond
childhood memories of throwing stones across a lake. Even for
kids, rock skipping is a task that can easily be accomplished.
However, the act of rock skipping itself is a highly dynamic
and relatively complex task. After taking Robotic Manipu-
lation, we were motivated to see if we can try to replicate
this task in a robotic setting. Specifically, we wanted to see
if we could design and implement a system in simulation
that utilizes an IIWA arm to complete the task of rock
skipping. This task can be broken down to several components:
picking up the rock, throwing it, and then simulating the
water skipping dynamics. Ultimately, by creating a system
in simulation, we hoped to vary parameters such as release
height and velocity in order to gain insight into what factors
were most important for maximizing the total number of skips.
In addition to gaining insight into rock skipping, we were
motivated to learn how to implement a dynamic system in
simulation.

The overall literature on rock skipping is pretty minimal,
especially any literature in a robotic setting. As a result,
the related works will be discussed in the introduction. One
of the most influential papers we used for our project is a
study from Truscott Et al. [5] which analyzes the physics
behind the phenomenon of skipping. The paper not only
provides the force relations when the rock is in contact with
the water, but also provides great intuition for how differing
setups affect performance. This was extremely useful for our
project as the paper gave us an intuitive understanding of the

potential effect of the parameters. The second related work is
from Mark Rober’s Youtube video on his own personal rock
skipping robot [3]. Taking a very experimental approach, Mark
concluded that rock angle relative to water, spin of the rock,
and rock shape were the most important factors. However, this
experimental setup was limited in the sense that the robotic
arm used was simply a renovated clay pigeon thrower. This
means the video lacked precision in the measurements taken
due to the real-world nature of the experiment, any form of
trajectory optimization, and automation such as picking up the
rock. We hope our project will be able to fill in some of the
gaps with a more rigorous simulated approach.

II. METHODS
A. Simulator Set-Up

The first step to our project was setting up our simulation.
We decided to use PyDrake [4] as the foundation for our
project since we have been using it all year in class. Within
PyDrake, we utilized the manipulation station which consists
of a Kuka ITWA LWR for our robotic arm and a simple two-
finger Schunk WSG 50 for our gripper. We figured the ITWA
arm and Schunk gripper provided enough flexibility for our
rock skipping task. In addition to choosing the manipulation
station, we created model instances using primitive geometries
in SDFormat for the water, table, and rock objects. These
primitive geometries are parsed by drake to create the model
in simulation. The entire setup is displayed below in Figure 1.
It is important to note that we assume an abundant number
of camera perspectives for this project and known location of
objects.

We had to make design choices when creating the models
for the water, table, and rock. Both the water and table were
relatively easy choices since any reasonable choice would have
no significant impact on the rock skipping task. We simply
placed them in locations advantageous for our manipulation
task. The water is a long rectangular model in the positive x
direction with a height at 0 m so its ground level. The table is a
box shape with its most important parameter being its height.
On the other hand, the design of the rock has a significant
impact on the performance of our system. This conclusion was
reached in both of the previous works [3, 5] as both works
found that a flat rock geometry resulted in more skips. This
will be explained more in the context of the skipping dynamics
in the next section. As a result, we choose to make our rock

Fig. 1. Image of our simulation setup with the IIWA arm, gripper, table,
water, and rock.

resemble a flat hockey puck shape. This shape matches the
flat rock geometry requirement and also provides a large top
and bottom surface area for the gripper. The most important
parameters and its values for the system’s models are shown
in Table L.

TABLE I
SYSTEM PARAMETERS
Rock radius 0.035 m
Rock length 0.015 m
Rock mass 0.25 kg
Table height 025 m
Water height 0Om

Lastly, our simulation setup includes a force system con-
troller to apply the spatial forces from the water onto the
rock. Collision geometry of the water is ignored and all impact
forces are computed according to a later described model. The
force system takes in the calculated water force and converts
it to an ExternallyAppliedSpatialForce type in PyDrake. This
type enables us to indicate what body in the simulation the
force is applied to. In order to utilize this output from the
force system, we had to expose the internal spatial force port
within the station. This is accomplished during the creation of
the station by exporting the internal spatial force port as an
input port.

B. Skipping Dynamics

Rock skipping occurs when an upward force on the surface
of water counteracts the force of gravity. We define this
force as Fj;s¢. If executed properly, this creates an upward
acceleration to bounce the rock off of the water and back into
the air. The free-body diagram of a flat rock colliding with the
water displaying Fj;r¢ is shown in Figure 2.

Upward force Fj;y; can be modeled as a drag force.
Previous papers [5] have employed this technique and used
Equation (1).

-Flift - pwaterCDSwet||V||25in(B + OZ)’FL (1)

The drag force acts in the upward normal direction n. It is
directly proportional to a coefficient of drag C'p. For our use

Flipe

Myockd

L.

Fig. 2. Free body diagram of a rock colliding with water surface. Upward
force from water surface defined as Fi; p¢.

case, we will take this coefficient to be equal to 0.5. The force
is also proportional to the density of the liquid it is skipping
OVer Pyater- LThis makes sense because if the liquid is more
dense, the rock is more likely to bounce off of it.

The force is proportional to the wetted area of the rock
Swet- As you increase the contact area between the rock and
water, you get a higher upward force. This is intuitive. It also
implies that a very flat rock geometry will give us more skips
because it can achieve a larger wetted area for a given mass.
Parameters of Fj;y, are displayed in Figure 3.

Fig. 3. Visually defined parameters of rock skipping. 7 is the upward vector
normal to the rock’s surface. S is the wetted area of the rock. « is the angle
between the rock and water surfaces. V' is the planar velocity of the rock in
three dimensions. 3 is the angle between V' and water surface.

The angle « is defined as the angle between the surface
of the rock and the surface of the water. This measures the
flatness of the rock on impact. It can be calculated according
to Equation (2).

a=acos(n-&)—m/2 ?2)

The angle §3 is defined as the angle between the rock’s planar
velocity V and the surface of the water. This measures the
flatness of the rock’s velocity on impact. It can be calculated
according to Equation (3).

B =m/2—acos(—=) 3)

~V,
V1|

The upward skipping force is proportional to the vector
norm of the rock’s planar velocity V. This tells us that the
faster you throw a rock, the more likely it is to skip. However,
in accordance with angle 3, this velocity should be as flat as
possible with minimum element in the Z direction.

We can take advantage of these force model parameters in
planning to create an advantageous system for rock skipping.

Outside of the lift force Fj;s;, we also supply a damping
force on impact to account for frictional losses. This force
is defined in Equation (4) and is intended to slow the rock
down as it skips. This should increase the accuracy of our
simulation. Damping coefficient D is chosen based on prior
experimental studies[1].

Fdamping =-DV “)

With Fyomping defined, we simply add this to Fj;¢; to get
the total force F),.; that should be supplied to the rock on
surface impact.

Frock = Flift + Fdamping (5)

C. Planning

The task of rock skipping can be broken down into 4 main
stages: bringing the rock to an ideal pickup position, picking it
up, loading up the rock before throwing, and actually throwing
the rock. Since our robotic arm is required to go through these
different stages, we implemented a state machine to handle
the planning of the arm. By utilizing a state machine, we can
easily switch the way we command and control the arm. These
different stages and the underlying control methods used to
command the arm are shown in Figure 4. It’s important to
note that we have a terminal state where the arm is no longer
commanded by anything. We enter this state while we are
simulating the rock skipping after it has been thrown.

Since the rock starts at the center of the table, the first
state is designed to get the rock to a better position to pick it
up. It is important to restate that we assume perfect perception
with an abundant number of camera perspectives and a known
rock location for this project. We manipulate the rock by
dragging it to the edge of the table as seen in Figure 5. In
order to drag the rock, we used simple kinematic planning
and differential inverse kinematics as the underlying control
method for the arm. Specifically, we created a sequence of
desired end-effector poses and specified the difference of time
At between each pose. Differential inverse kinematics is then
used to determine the necessary joint commands to achieve
those poses. We drag the rock to the edge of the table in
order to get a strong antipodal grasp with the gripper grasping
the two large flat surfaces of the rock (top and bottom).

After dragging the rock, we enter the second state which is
picking up the rock. The antipodal grasp mentioned before
is shown in Figure 6. Similarly to the dragging state, we
continue to use simple kinematic planning and differential
inverse kinematics during this state to command the arm. The
third state is loading up the rock to throw. In order to gain the

Drag Rock

Y

Pick Up Rock

y

Load Up

Terminal

[]

Kinematic Trajectory Optimization -

[]

Fig. 4. The planning state diagram shows the 5 different states for our robotic
arm. The color of each state reveals the control method used as displayed by
the bottom legend.

Inverse Kinematics

Cease Control

Fig. 5. Manipulation of the rock to reposition it from the center of the table
to the edge. By dragging the rock to the edge of the table, we can utilize a
more ideal grasp position on the rock.

most speed during the throw, we position the arm the farthest
away from the water we can. The motion planning and control
method is the same as the two other states.

The final state that requires control of the arm is the throw-
ing state. The exact optimization is mentioned explicitly below
in the Throwing Optimization section. Ultimately, we utilize
Kinematic Trajectory Optimization as the underlying control
method within this state. This control method is required

Fig. 6. The gripper clamps the rock in a similar manner as a human would
hold a frisbee. This antipodal grasp maximizes the contact area between the
rock and the fingers of the gripper which allows for a more secure hold.

to properly consider velocity constraints that could not be
accomplished with a simple inverse kinematics approach.

D. Throwing Optimization

Once the rock has been gripped, we must throw it at a
proper speed to cause skipping. During pick-up, we grab the
rock in such a way to take advantage of the rock’s cylinder
geometry. By clamping down on the rock’s flat sides, we have
an antipodal grasp that can effectively hold the rock with high
normal force throughout the duration of the throw until release.

The objective of rock skipping is to throw the rock at a
desired velocity from a desired release point. Originally, we
attempted to throw the rock using a simple differential inverse
kinematics approach. This is the same approach we used to
plan the pickup of the rock. We commanded a set of desired
end-effector poses wit varying At between them that speed
up to a desired velocity until the rock’s release. However, this
approach did not work. Differential inverse kinematics does
not fully consider the set of desired poses, it only maps a path
between sequential desired poses. Therefore, this approach has
a difficulty achieving the high velocities required to skip a
rock. It may successfully follow the first few desired poses,
but eventually it’s joints may reach an unadvantageous position
that restricts the solver from planning paths to future poses.
This is compounded by the fact that later poses are required
to reach a higher speeds across the throw. After this approach
failed, we had to find a more comprehensive approach that
planned across the whole path and had a better intuition of
desired velocity.

Instead, we used kinematic trajectory optimization to find
the optimal path for throwing at a desired velocity from a
desired release point. This approach considers all constraints
when finding the optimal, comprehensive throwing trajectory.
From a high-level view, we specify an initial load-up position
Do, a release position p,, and an end position of the end-
effector to follow through to after release py. These positions
follow an approximately radial path about the origin of the
robot frame. The trajectory path and constraint poses can be
seen in Figure 7.

The trajectory optimization formulation is outlined in Equa-
tion (6). We impose loose position constraints of the end-
effector around the three specified poses with error bound
€p. These create a box around each that the gripper must

Fig. 7. Trace of trajectory path with desired release velocity 25 m/s and
desired release height of 0.5m. Initial po, release py, and final p; constraint
poses are shown with respective coordinate frames.

pass through. We impose more strict constraints around the 2
coordinate of the release position. This is because the release
height has a great effect on the resulting trajectory of the rock.
We do not care as much about the rock’s release point along
the z and ¢ axes.

Similarly, we impose an orientation constraint with very
small angular bound ¢y at the release point to make sure that
the rock is released as flat as possible. More rigorously, the
normal force of the rock should be parallel to the Z axis.

Most importantly, we impose a constraint on spatial velocity
with small error bound €, at the release point. This requires
that our end-effector is moving at an input desired & velocity.
Once again, this is highly important throwing because we
want to make sure the rock is thrown at a velocity that is
advantageous to allow for skipping.

mqln Ttraj + Ltraj

s.t. ForwardKinematics(g;) = p;
€p < Po < Do, des + €p

€p Spf Spf,des"_ep (6)
&

4

Rr,des —e <R < Rr,des + €9

pr,des — €y < pr < pr,des + €y

Po,des —
Pf.des —

€
DPr,des — Zp <pr< Pr.des T

We minimize the length and duration of the throwing
trajectory to get a smooth and fast resulting trajectory. The
optimization problem is solved using the SNOPT solver [2]
implemented in PyDrake.

III. RESULTS & DISCUSSION
A. Release Velocity

The dynamics model we employed to model skipping im-
plies that skipping lift force is highly dependent on velocity.
We ran our planning structure on a set of desired velocities to
measure the effect that velocity has on skipping. The robotic
system did not perfectly achieve the desired release velocities.
This is likely due to imperfections on throw release. Our two-
finger gripper is sub-optimal for throwing and cannot release

the rock as directly as hoped. The rock may collide with
the gripper on release and decelerate. Discrepancies between
desired velocities and actual release velocities are tabulated in
Table II.

Despite this fact, rock velocities were still quite high and
able to skip across the water in simulation. The resulting tra-
jectories for respective desired throwing velocities are graphed
in Figure 8.

TABLE II
OUTPUT THROWING VELOCITIES
Desired throw Output rock Number of
velocity (&) velocity (&) Skips
25 m/s 14.4 m/s 4
20 m/s 12.6 m/s 3
15 m/s 9.9 m/s 0

Rock Skipping Trajectories

- 25 mfs
041 — 20m/s
15 m/s
m—— \Water
0.3
E 02
N
0.1
0.0
T T T T T T T T
0 2 4 6 8 10 12 14 16

x (m)

Fig. 8. Resulted skipping trajectories for a set of commanded desired output
velocities Z 4. Surface of water shown in blue.

We can conclude a few things from these resulting trajec-
tories. Firstly, it is clear that a higher velocity & leads to a
longer trajectory length and greater number of skips. We can
clearly see that the rock thrown with highest desired velocity
achieves the most skips. The rock thrown at a lower velocity
still skips, but does not skip as many times or go as far.

Furthermore, we can conclude that a rock must be thrown
above a certain a velocity to actually skip. All other conditions
withstanding, there is effectively a cut-off velocity which must
be superseded in order to counteract the force of gravity. We
see with the rock thrown at desired velocity of 15 m/s, it does
not skip. This rock is thrown at an actual velocity of 9.9 m/s.
So, we expect that the rock in our system must be thrown at
at least 10 m/s to allow for skipping.

Many limitations were faced in attempt to get the ITWA
arm to throw the rock at these high velocities. We only
ran test trials below 25 m/s because any desired velocity
over this led to slipping. When slipping occurred, the rock
would preemptively fly out of the gripper before reaching the
prescribed release point. We grasped the rock using the best

possible anti-podal grasp on the flat sides of the cylinder, but
this was not enough. We attempted a handful of preventative
measures to solve this problem. First, we maximized the
normal force of the grasp. Slipping still occurred. Second, we
tried to increase the friction of the rock-gripper interaction.
When that didn’t work, we tried to decrease the At of our
simulator. None of these methods allowed us to properly throw
above 25 m/s. However, they did help us reach the 25 m/s
maximum desired velocity that we observed. It is a lot to ask
the simulator to work at velocities above this threshold. In the
future, we would hope to further fine-tune the above mentioned
parameters and likely design a new gripper. A customized
multi-finger gripper that is more optimized for rock skipping
would greatly increase our chances of throwing above 25 m/s
and avoid premature slipping.

B. Release Height

Our dynamics model tells us that a flatter velocity with
minimum v, element is best for skipping. We hoped to test this
hypothesis by running our implementation on a set of varying
desired release heights. Our trajectory optimizer constrains that
the rock must be released at nearly the exact release height.
However, the solver had difficulty finding solutions for many
different release heights. This meant we could not run as many
trials with varying release heights as we had initially hoped to.
We suspect that the reason the trajectory optimization did not
work at different release points is because we had fine-tuned
our setup to operate at a specific release height of 0.5m.

Despite difficulty, we still did get some successfully solved
trajectories at a different release height. Results comparing
these different release heights at a constant throwing velocity
are plotted in Figure 9. It is clear that the higher release height
only creates 3 skips. This is less than the lower release heights,
which skips 4 times. This matches our assumption from the
dynamic model of skipping we use.

Rock Skipping Trajectories at 25 m/s

0.7 4

—_— 0.5 m
0.6m
061 m— \Nater
0.5 1
0.4
E
N 0.3
0.2 1 \
0.1 \ /\
0.0 1 v/ /—\
: T . T T . T .
0 2 4 6 8 10 12 14 16

x (m)

Fig. 9. Resulted skipping trajectories for a set of commanded desired output
velocities Z4e5. Surface of water shown in blue.

Due to problems with solving for trajectories, we cannot
fully prove that a lower release height is best for rock skipping.

However, the two trajectories we have generated suggest that
a lower release would likely lead to less skips. In the future,
we would need to further tune our planning system in order
to get more reliable data.

IV. CONCLUSION

Overall, our system was able to demonstrate skipping and
generate some preliminary results. However, it has a fair
number of limitations. We showed that a higher throw velocity
leads to more rock skips. But, we could not show this over
a wide range of velocities due to gripping inefficiencies. We
also suspect that a lower release height gives more skips based
on preliminary results. This cannot be rigorously proven due
to issues with trajectory optimization.

In the future, we would like to improve the capabilities
of our system. Most importantly, we would like to create a
customized gripper with geometry that prevents the rock from
prematurely slipping even at high velocity throws. This way
we can test over a wider range of velocities and hopefully get
a more impressive number of rock skips. We would also like
to generalize our approach to trajectory optimize to test over a
more diverse set of release points. These improvements would
enable us to have a more holistic investigation of the effect
that throwing has on rock skipping.

Our system assumed a constant rock geometry at a known
location. Rock geometry certainly has an effect on skipping.
We chose our rock shape to be flat and cylindrical because this
is what is typically sought after by real-world rock skippers.
A more generalized planning system would allow us to test a
wide variety of rock geometry and outline a clearer picture of
which rock shapes are best. This type of study would allow
us to develop a perception system which can choose the best
rock to skip over a set of choices. Implementing this into our
system would make the system capable of skipping a rock
autonomously in a real-world like setting.

V. CONTRIBUTIONS

In terms of contributions, our work overlapped significantly
as we both worked on tasks such as simulation setup, overall
implementation, and debugging together. As a result, the divi-
sion of work isn’t too distinctly separable. However, there were
two sections of our project that were implemented entirely by
a single team member. Michael designed and implemented
the skipping dynamics, and Nicholas created the planner state
machine.

REFERENCES

[1] JE Escalante-Martinez et al. “Experimental evaluation
of viscous damping coefficient in the fractional under-
damped oscillator”. In: Advances in Mechanical Engi-
neering 8.4 (Apr. 2016), p. 168781401664306. DOTI: 10.
1177/1687814016643068. URL: https://doi.org/10.1177/
1687814016643068.

[2] Philip E. Gill, Walter Murray, and Michael A. Saun-
ders. “SNOPT: An SQP Algorithm for Large-Scale Con-
strained Optimization”. In: SIAM Review 47.1 (2005),
pp- 99-131. por: 10.1137/S0036144504446096.

(3]

Mark Rober. Rock Skip Robot- The Science of Perfect
Rock Skipping. Youtube. URL: https://www.youtube .
com/watch?v=MO0_U1FHwACk.

Russ Tedrake and the Drake Development Team. Drake:
Model-based design and verification for robotics. 2019.
URL: https://drake.mit.edu.

Tadd Truscott, Jesse Belden, and Randy Hurd. Water-
skipping stones and spheres. en. Dec. 2014. DOIL: 10.
1063/pt.3.2631. URL: http://dx.doi.org/10.1063/PT.3.
2631.

